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will provide the most fruitful means of studying the 
TL excitation mechanisms. In such systems, the TL 
spectra may contain dynamic features characteristic of 
the system under stress. 
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Base-Catalyzed Rearrangement of Aminomethylsilanes 
to Methylaminosilanes 

Sir: 
Considerable attention has been focused in recent 

years on the subject of 1,2-anionic rearrangements of 
organosilicon compounds.1 

R3SiXYH 7 ~ > R3SiYXH 

Known examples of this type of reaction are the 
silylcarbinol-alkoxysilane rearrangement2 and its re­
verse3 (X = C, Y = O), the benzylthiotrimethylsilane-

a-trimethylsilylbenzyl mercaptan rearrangement4 (X = 
S, Y = C), the silylhydrazine rearrangement5 (X = 
Y = N), and the rearrangement of l,l-bis(trimethyl-
silyl)-l,2-diphenylethane6(X = Y = C). 

We wish to report a new example of this type of 
reaction, the base-catalyzed rearrangement of secondary 
aminomethylsilanes to the isomeric aminosilanes (X = 
C, Y = N). 

When benzene solutions of a variety of aminomethyl-
and aminobenzylsilanes (Table I), prepared by the 
method of Speier,7 were treated with a small amount of 
n-butyllithium (0.1-0.2 equiv) the rearrangement oc-
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curred in high yield at room temperature or at 100°, de­
pending on the amine. The reactions could be con­
veniently carried out in sealed nmr tubes and the rela­
tive rates were determined by spectroscopic examina­
tion of the solution. The rearrangement products were 
identified by gas chromatographic and spectral com­
parison with authentic samples prepared by alternative 
methods. 

RsSiCHR'X + R"NH2 — > R3SiCHR'NHR" 

J n-BuLi 

R3SiX + R ' C H 2 N H R " —=>• R3SiNR "(CH2R') 

Our preliminary rate studies indicate that the reaction 
obeys pseudo-first order kinetics and the following 
observations are believed to be significant: (a) amino­
benzylsilanes (R' = Ph) rearrange more rapidly than 
aminomethylsilanes (R' = H); (b) TV-methyl com­
pounds rearrange more rapidly than TV-benzyl-, N-
isopropyl-, or /V-cyclohexylamines; (c) silylmethyl-
anilines do not appear to rearrange under any condi­
tions investigated. These facts are in accord with a re­
arrangement mechanism, analogous to that proposed 
for the silycarbinol-alkoxysilane rearrangement, in 
which an initially generated nitrogen anion undergoes 
a 1,2-migration of silicon from carbon to nitrogen. 
The resultant carbanion can in turn abstract a proton 

from the parent amine to give the product and regen­
erate the nitrogen anion. 

RsSiCHR'NHR" + H-BuLi — > - R 3 SiCHR'NR" + /!-BuH 

CHR' 
/ 

RsSiCHR'NR" ^ = i R3SiN 
\ 

R" 

CHR' 

R3SiN + R3SiCHR1NHR' ^=±: 
\ 

R" 

CH2R' 

R3SiN + R3SiCHR'NR" 
\ 

R" 
Thermodynamic calculations using available bond 

energies suggest that the overall reaction will vary in 

Table I. Rearrangements of Secondary Aminomethylsilanes Catalyzed by /!-Butyllithium 

Aminomethylsilane 

Me3SiCH2NHCH2Ph 
Me1SiCH2NHC6HiI 
Ph3SiCH2NHCH2Ph 
Me3SiCHPhNHMe 
Me3SiCHPhNH-J-Pr 
Me3SiCHPhNHC6H11 

Me3SiCHPhNHC6Hn 

Me3SiCHPhNHCH2Ph 
Me3SiCH2NHPh 
Me3SiCHPhNHPh 

Equiv of 
/!-BuLi 

0.10 
0.10 
0.17 
0.10 
0.10 
0.20 
0.20 
0.10 
0.10 
0.10 

Reaction conditions" 
temp, 0C 

100 
100 
25 
25 
25 
25 

100 
25 

100 
100 

time, hr 

40 
0.5 

37 
1 

36.5 
60 
0.25 

24 
40 
40 

Silylamines1 

Me3SiNMeCH2Ph (A) 
Me3SiNMeC6H11 (A) 
Ph3SiNMeCH2Ph (B) 
Me3SiNMeCH2Ph 
Me3SiN(CH2Ph)-I-Pr (B) 
Me3SiN(CH2Ph)C6H11 (B) 
Me3SiN(CH2Ph)C6Hn (B) 
Me3SiN(CH2Ph)2 (B) 
No reaction 
No reaction 

° Rearrangements carried out in benzene solution in nmr tubes sealed under nitrogen. 6 Method of alternative synthesis: A, R3SiCl + 
R ' R " N H + Et3N; B, R ' R " N L i + R3SiCl. 
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exothermicity from approximately 2 to 20 kcal/mol de­
pending on the nature of R ' and R " . 

The proposed mechanism accounts for the more rapid 
rearrangement of the benzylaminosilanes (R' = Ph) 
where stabilization of the carbanion relative to the ni­
trogen anion would occur and the lack of rearrange­
ment of the anilines ( R " = Ph) where stabilization of 
the nitrogen anion relative to the carbanion should 
exist. Attempts to investigate the reverse reaction by 
metalation of the benzyl carbon of compounds such as 
jV-trimethylsilyldibenzylamine using excess tert-butyl-
lithium or the «-butyllithium-tetramethylethylenedi-
amine complex have now been made successfully. More 
detailed studies of the scope and mechanism of this re­
arrangement are in progress. 
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Estimation of Solvolysis Rates of Cyclic 
Secondary Substrates 

Sir: 

A major difficulty in the controversy surrounding the 
importance of anchimeric assistance in the solvolysis of 
secondary alkyl derivatives1-5 has been the inability 
to predict solvolysis rates of cyclic substrates.6 One 
method of performing such predictions is by use of a 
form of the Taft ex* linear free energy relationship, eq 
I.7-11 For example, solvolysis rates of acyclic deriva-

log k/ko = a*p* (1) 

tives are correlated by the a* treatment, and positive 
deviation from this correlation has been taken as 
evidence for anchimeric assistance.8'9'11 Unfortunately, 
a* constants are not available for cyclic systems and, 
in certain significant cases, cannot be determined by 
the usual methods.7'l2 
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We have developed a method for prediction of sol­
volysis rates of secondary cyclic systems (1) which is 
based on solvolysis rates of the corresponding methyl-
substituted tertiary derivatives (2). A linear a* plot 

^X X 
1 2 

is observed for the solvolysis of acyclic tertiary chlo­
rides in 80% aqueous ethanol (p* = —3.29)" and of the 
^-nitrobenzoates in 60% aqueous acetone (p* = 
— 2.2).13 By placing the rates of cyclic tertiary deriva­
tives, 2, on these plots, a* values (designated <rt*) 
can be determined. These at* values will accurately 
reflect inductive, hyperconjugative, and steric effects 
for solvolysis of a secondary cyclic alkyl system if there 
are no major steric differences between the secondary 
derivatives and the tertiary models. Substitution of 
a methyl group onto cyclic (e.g., cyclopentyl) and 
polycyclic (e.g., 2-norbornyl and 2-adamantyl) systems 
has been shown to contribute little to ground-state 
steric strain.1413 Exceptions are the medium rings 
and certain polyalkylated norbornyl derivatives; use 
of the (Tt* method for treatment of these complex 
substrates is deferred. 

Use of cxt* and eq 1 should yield calculated rates for 
secondary substrates accurate within a factor of 10, 
with this variation due to temperature and solvent ex­
trapolations and uncertainties in c* plots (a factor of 
2), and to minor steric variations (a factor of 5). In 
fact, the average deviation for model substrates is only 
a factor of 2. 

Reaction constants (p*) are known for the acetolysis 
(p* - — 2.6)10'16 and aqueous ethanolysis (p* = —1.92 
in 80% ethanol)17 of acyclic derivatives. These re­
actions have been clearly shown9'lf,'18~20 to involve 
nucleophilic solvent assistance (a ks process)18 equiv­
alent to a rate factor of 102—104. Thus, use of these 
p* values yields calculated rates which include assist­
ance of 10M04. 

Comparison of predicted and observed solvolysis 
rates for several model ks substrates18'20-21 (1-6) shows 
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